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A bit of Context
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A very short introduction on supersymmetry

Supersymmetry introduces a new set of particles coupling the "old" SM particles and the
new hypothetical "SUSY" partners in the so-called supermultiplets.

• Bosonic quark (squarks) and
lepton (sleptons) partners

• Mixing of Gauge partners
(Gauginos) in Neutralinos
χ0

1,2,3,4 and Charginos χ±
1,2

• 5 Higgs bosons

• SUSY particles may have very
large masses (above the
reach of LHC)
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Minimal MSSM discussion

MSSM: Minimal extension of the current theory consistend with SUSY theory and
observed phenomenology

• Lightest susy squark expected to be the
top quark partner, the stop t̃

• The super-partners of the top mix in
two mass eigenstates, t̃1 and t̃2 (with t̃1
lighter by convention)

• Looking for direct pair production of
stop1 and 2 using Z/h as "handles"

• Higgs boson expected to decay into two
b quarks, originating b-jets
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Experimental Context

The ATLAS detector at LHC

Data acquired in proton-proton collision at
√
s =

13 TeV during 2015 - 2018 period

Higgs candidate reconstruction:

• Consider all the particle jets
reconstructed as coming from the
hadronization of b-quarks

• Look at all the possible
combinations of two b-jets

• Find a way to discriminate which
b-jet pair combination is most likely
to come from the decay of Higgs
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HTag: the idea

In 2018 we published a search for direct stop pair production and decay in Higgs

• Hard to reconstruct Higgs candidates starting from
b-jet pairs

• Pair of b-jets with the highest combined pjjT or most
collimated pair of b-jets?

• Cut on the combined invariant mass close to mh?
(introduces mass bias)

• Combining methods proved very inefficient due to low
statistics

Kinematic properties of the candidates barely used. Need
a way to reconstruct h→ b̄b without biases
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What about Neural Networks?
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Sixty seconds for theoretical foundation of NN

Neural Network: Artificial Neurons
arranged in layers
Vector of inputs xi transferred between
layers; Connection between a Neuron on
input layer and one on Hidden Layer is
associated to weight wij
Each neuron produces an output signal
described as:

Sj = f(
∑

wijxi + bi) (1)

where f(x) is the Activation Function.
Once information is transferred through all
layers, we obtain a prediction (output)
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Sixty seconds for theoretical foundation of NN

Training: the value of the weights wij and
biases gets iteratively adjusted multiple times
(epochs) by comparing the Neural Network
output to the expected output using a test
sample of known composition. To prevent
overtraining, a second sample (validation) is
evaluated in parallel

Inference: the process of obtaining a
prediction (output) from a trained neural
network on an unknown dataset

Training sample must be statistically
independent yet similar to the dataset of
interest
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Yet another introductory slide on NN in HEP

Not quite the new kid on the block: been around since the ’60, massive spike of uses
during the last 10-20 years. Coming out right now from the Machine Learning Wild West.

• Regularize and rationalize use Machine
Learning

• Parallelization and Deeper Networks
(DNN)

• Explore new topologies

• Develop tools for easier implementation
and User Experience
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Neural Networks in HEP

Used in:

• Real-Time/Fast Trigger

• Detector Simulation

• Data Analysis

Widely used at different levels of complexity and
expertise by the community

Essential for Machine Learning techniques to be
effortless implementable in our frameworks and
easy to understand for everyone in HEP without
reinventing the wheel every time
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Let’s reconstruct some Higgs candidates!
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HTag Neural Network
Goals

HTag is an Artificial Neural Network combinatorial solver framework for:

• Reconstruction of the H→ bb̄ decay

• Goal is to improve reconstruction efficiency and reduce invariant mass bias with
respect to traditional reconstruction methods

• Training: Implemented using PyTorch 1.1.0. Python-based library, providing
tensor computation and strong GPU acceleration

• Inference: custom implementation in C++11/ROOT

• Evaluate combinations (jet-pairs), as opposed to event selection
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HTag Neural Network
Data selection

• Event based selection:
NN makes predictions
based on kinematic of the
entire event
Reconstructs Processes

• HTag: NN makes
prediction based only on
the kinematic of the jets
Reconstructs Higgs
Candidates
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HTag Neural Network
Training samples

• MonteCarlo generated training sample enriched in signal with a 1:1
Signal-to-Background ratio

• Statistically independent validation sample used to prevent overtraining

• Order of jet combinations randomized each epoch

Training Sample:

• 600k combinations

• 50% jet pairs from tt̄ sample
(Background)

• 50% jet pairs from H selected in ttH
fully hadronic sample (Signal)

Validation Sample:

• 400k combinations

• 50% jet pairs from tt̄ sample
(Background)

• 50% jet pairs from H selected in ttH
semileptonic sample (Signal)

Totally blind to SUSY!
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HTag Neural Network
Optimization

Each jet-pair classified with a NN score as Bkg (0) or Higgs (1)
Predictions confronted to truth-level origin of jets combination

Loss function: quantifies how well our prediction matches the target. Based on Binary
Cross Entropy Loss (BCELoss) classifier

Optimizer: weight back-propagation optimized with Stochastic Gradient Descent (SGD)
algorithm

wj = wj − LR
∂L

∂wj

with a Learning Rate (LR) parameter of 0.005. For faster convergence, Nesterov
Momentum (0.9) has been applied to the computation
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HTag Neural Network
Input features

Model 5Lx10
5 Hidden Layers with 10
Features, 5 for each jet of the
combination

• Reduced Momentum pT
mjj

• Jet η

• Jet φ

• Jet mass m

• Pseudo-Continuous b-tag
score

Input + 
Batch Normalization

Hidden 1 Hidden 2 Hidden 3 Hidden 4 Hidden 5 Output + 
Dropout
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Pseudo-Continuous b-tag is a score (1 to 5) indicating different levels of tightness in the
requirements for the identification of a jet as b-jet
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Ok, but does it work?
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HTag Neural Network
Prediction evolution

Neural network prediction (score) for Validation Sample at epoch 0 and epoch 10. Score
distribution is classified based on the truth information.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
HTag score

0

2500

5000

7500

10000

12500

15000

17500

En
tri

es

HTag score per combination (stacked)
SIGNAL-SIGNAL
BACKGROUND-BACKGROUND

0.0 0.2 0.4 0.6 0.8 1.0
NN score

0

5000

10000

15000

20000

25000

En
tri

es

HTag score per combination (stacked)
SIGNAL-SIGNAL
BACKGROUND-BACKGROUND

19 / 32



Stop(Zh) Neural Networks!
Introduction HTag Selections Results Conclusions Future

HTag Neural Network
Reconstructed kinematic quantities

Jet pair invariant mass mjj

0 50 100 150 200 250
Jet pair invariant mass [GeV]

0

2500

5000

7500

10000

12500

15000

17500

En
tri

es

Background pairs
Higgs pairs

Jet pair transverse momentum pjjT

0 50 100 150 200 250
Jet pair pT [GeV]

0

1000

2000

3000

4000

5000

6000

En
tri

es

Background pairs
Higgs pairs

20 / 32



Stop(Zh) Neural Networks!
Introduction HTag Selections Results Conclusions Future

Introduction
Signal Models

Search for stop squark pair (t̃t̃) production in final states with Z or h boson:

t̃1
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t̃t̃ → tt̄+ χ̃χ̃



χ̃ → Z/h+ χ̃

Two selections targeting different bosons:

StopH (multi-b):

• 1` + 4 b-jets

• h→ bb̄

StopZ (multi-`):

• 3` + 1 b-jet

• Z → `+`−
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Signature
Multi-b selection
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Final state:

• 1 lepton (e, µ) from either one t or the
other Z

• ≥ 4 b-jets

• high-jet multiplicity

• EmissT from Neutralinos, etc.

• H → bb̄ reconstructed with NN
technique

Masses? Branching ratios?
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StopZh analysis
Signal mass grid

• Simplified model containing only t̃

• mχ̃

= 0.5 GeV

• BR of the t̃ decay is fixed to 50% in Z
and 50% in Higgs.

• Present exclusion limits up to
mt̃
≈ 850 GeV

• Benchmark points for search
optimisation at different mχ̃



SRL = low χ̃ mass
SRH = high χ̃ mass

• Need some tight requirement to
reconstruct events with Higgs!!!
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Selection strategy
Higgs counting

In decays with many (> 1) Higgs bosons, the multiplicity of Higgs candidates passing a
NN score selection can be a powerful discriminating variable (Higgs counting).
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Selection strategy
Discovery Signal Regions

SR optimisation done scanning a set of discriminant variables, assuming a 30% systematic
uncertainty on the expected SM backgrounds and aiming at maximising the discovery
sensitivity

Definition SRL SRH
Number of leptons (pT > 4 GeV) 1
obj. EmissT sig > 7 > 12
Number of jets (pT > 60 GeV) ≥ 6 ≥ 4
Number of b-jets (pT > 30 GeV) ≥ 4
mT [GeV] > 150
Number of Higgs (NN score > 0.7) ≥ 1

mT ≡
√

2 pT EmissT (1− cos(∆φpT ,Emiss
T

))

Object-based EmissT -significance discriminates events where the EmissT is due to invisible
particles in the final state 25 / 32
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Fit Results

26 / 32



Stop(Zh) Neural Networks!
Introduction HTag Selections Results Conclusions Future

Results
Discovery Signal Regions

Analysis performed using proton-proton
collision data at

√
s = 13 TeV collected by

the ATLAS experiment during the LHC
Run-2 (integrated luminosity of 139 fb−1).

Expected and observed events in discovery
SRs. Errors quoted include all the

uncertainties.

SRH SRL

Observed events 11 24

Fitted bkg events 16.54± 3.14 19.48± 4.99
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• StopZ and StopH designed to perform statistical combination
• Limits on the t̃ model obtained from the best expected combination of the StopZ and StopH

likelihoods
Best expected combination
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Conclusions

• HTag NN is a suitable option as h→ bb̄ finding algorithm, with potential in a
wide variety of scenarios, not bound to SUSY
• Higgs multiplicity from Neural Network is a powerful discriminant
• Search for new physics in final states with 1 lepton, high jet and b-jet

multiplicities, and EmissT using the full ATLAS Run 2 dataset found in
agreement with SM predictions
• Limits have been statistically combined with a search for new physics in χ̃

decaying into Z to increase the exclusion reach
• Results put limits up to ∼1100 GeV on t̃ masses with χ̃ decaying in h with

50% BR
• Paper went Public Today on arXiv!: Search for top squarks in events with a

Higgs or Z boson using 139 fb-1 of pp collision data at
√
s=13 TeV with the

ATLAS detector
29 / 32
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Where do we go from here?
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HTag
Future developments and ideas

• Portability: the code needs to become easier to share among different
analyses and groups
• Understand the backgrounds: a second NN can be created and used as

Adversarial Neural Network ; one NN reconstructs the likelihood of a
combination being a Higgs, while the other the likelihood of it coming from the
background
• More flexibility in the classification: use of multi-level discrimination to

reconstruct likelihood of different processes
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Introduction
Signal Models

Search for stop squark pair (t̃xt̃x) production in final states with Z or h boson:
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Two selections targeting
different bosons:

StopH (multi-b):

• 1` + 4 b-jets

• h→ bb̄

StopZ (multi-`):

• 3` + 1 b-jet

• Z → `+`−
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HTag Neural Network
Model initialization

• Feed Forward Linear NN initialized with Kaiming weight initialization to prevent
saturation of input neurons

• Input and Hidden layers based on Leaky ReLU activation function

• Output layer prediction obtained by a Sigmoid activation function

• Dropout layer (20%) to prevent overfitting ("Learn less to learn better!")

35 / 32



Stop(Zh) Neural Networks!
Backup

HTag Neural Network
Batching

Evolution of training and validation losses as a function of the epoch evaluated
respectively on the Training Sample and Validation Sample

• Input layer act as a batch
normalization layer: prevent "big
variables"(pT, mass) to eclipse smaller
ones (eta, phi)

• Data split in batches of 256
combinations each for faster convergence

• Training now takes 10 minutes on a
laptop CPU instead of 3 hours on GPU
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HTag Neural Network
Hyperparameter Optimization

Scan over the NN parameters minimizing the Loss to determine the best set of parameters
(sim250k parameter combinations tested)
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HTag Neural Network
Reconstruction efficiency

HTag is trained on SM Higgs samples, no
SUSY sample used in the process.

Reconstruction efficiency for events with ≥ 2
b-jets passing score ≥ 0.7 selection:

• ε0.7tt̄h = 0.78

• ε0.7susy sig = 0.54 (grid average)

• ε0.7bkg = 0.13
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HTag Neural Network
Reconstructed Di-Jet mass distribution

Distribution of the NN score as a function of the jet pair invariant mass in Validation
Sample

0 50 100 150 200 250
Jet pair invariant mass [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

NN
 sc

or
e

Higgs pairs

0 50 100 150 200 250
Jet pair invariant mass [GeV]

Background pairs

Training selected as the least
correlated with the di-jet
invariant mass between the
best performing solutions.

In an unbiased mjj

distribution, the sidebands
around the Higgs peak could be
used to aid the background
estimation
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Background estimation
Composition

Main backgrounds are the processes with high b-jet multiplicity:

• tt̄ (> 70%)

• Single top

• Mixed Higgses production modes

• V V (including Z+jets and W+jets)

• Others (minor contributions from rare top processes)

tt̄ background normalisation determined with data-driven fit in dedicated CR. Other
backgrounds determined from MC simulations due to low yield after selections are applied.

Nobs(CR) = µtt̄N
MC
tt̄ (CR)+NMC

Singletop(CR)+NMC
V V (CR)+NMC

MixedHiggses(CR)+NMC
Others(CR)
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Control region tt̄
CRT

Summary of selection criteria for the tt̄ CR and comparison with the SR selections. The
cuts on the METsig and on the number of jets reported is the minimum cut applied in the
binned version of the SRs.
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Control region tt̄ Yield

µtt̄ = 1.09± 0.13 CRT

Observed events 119

Fitted bkg events 118.93± 10.90

Fitted ttbar events 104.93± 10.93
Fitted VandVV events 0.60± 0.04
Fitted ttV events 2.99± 0.18
Fitted MixedHiggses events 5.10± 0.31
Fitted singletop events 4.58± 0.28
Fitted Others events 0.73± 0.04

MC exp. SM events 109.82± 6.71

MC exp. ttbar events 95.82± 5.86
MC exp. VandVV events 0.60± 0.04
MC exp. ttV events 2.99± 0.18
MC exp. MixedHiggses events 5.10± 0.31
MC exp. singletop events 4.58± 0.28
MC exp. Others events 0.73± 0.04
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Selection strategy
Discovery Signal Regions Yields

SRL SRH

MC exp. T1T1_onestepN2N2_800_130 events 14.12± 0.00 8.86± 0.00
MC exp. T1T1_onestepN2N2_1000_550 events 13.53± 0.00 16.22± 0.00

MC exp. SM events 15.49± 2.53 18.15± 4.43

MC exp. ttbar events 11.04± 2.44 13.91± 3.89
MC exp. VandVV events 0.05+0.05

−0.05 0.13± 0.08
MC exp. ttV events 1.15± 0.26 0.95± 0.25
MC exp. MixedHiggses events 1.19± 0.21 0.88± 0.44
MC exp. singletop events 1.38± 0.23 0.74± 0.22
MC exp. Others events 0.68± 0.13 1.53± 0.32
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Yield tables
Binned SRL Regions

Expected and observed events in the binned version of SRL. Errors quoted include all the uncertainties

SRL1A SRL1B SRL2A SRL2B

Observed events 19 9 14 9

Fitted bkg events 19.29± 5.72 9.44± 2.51 11.13± 4.06 6.68± 1.86

Fitted ttbar events 16.64± 5.52 7.26± 2.40 9.04± 3.74 5.12± 1.81

Fitted VandVV events 0.14+0.26
−0.14 0.00± 0.00 0.07± 0.04 0.05± 0.04

Fitted ttV events 0.76± 0.35 0.36± 0.09 0.53± 0.24 0.29± 0.18
Fitted MixedHiggses events 0.99± 0.29 0.98± 0.22 0.36± 0.19 0.48± 0.26

Fitted singletop events 0.26± 0.14 0.48± 0.07 0.47± 0.18 0.04+0.08
−0.04

Fitted Others events 0.49± 0.10 0.36± 0.08 0.67± 0.16 0.70± 0.16

MC exp. SM events 17.84± 5.06 8.81± 2.24 10.35± 3.70 6.23± 1.63

MC exp. ttbar events 15.20± 4.81 6.63± 2.10 8.25± 3.33 4.67± 1.54
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Yield tables
Binned SRH Regions

Expected and observed events in the binned version of SRH. Errors quoted include all the uncertainties

SRH1A SRH1B SRH2A SRH2B SRH3A

Observed events 2 5 3 2 3

Fitted bkg events 7.17± 1.76 4.27± 1.82 2.64± 0.60 2.16± 1.30 7.36± 1.24

Fitted ttbar events 5.78± 1.80 3.45± 1.70 2.03± 0.52 1.65± 1.17 5.24± 1.19

Fitted VandVV events 0.04+0.26
−0.04 0.02+0.03

−0.02 0.00± 0.00 0.00± 0.00 0.04± 0.02

Fitted ttV events 0.39± 0.16 0.21± 0.14 0.21± 0.12 0.14± 0.10 0.60± 0.29
Fitted MixedHiggses events 0.38± 0.08 0.42± 0.13 0.20± 0.05 0.19± 0.07 0.47± 0.09
Fitted singletop events 0.51± 0.19 0.10± 0.04 0.17± 0.08 0.17± 0.06 0.66± 0.12

Fitted Others events 0.08± 0.03 0.06± 0.02 0.03± 0.03 0.02+0.03
−0.02 0.36± 0.07

MC exp. SM events 6.66± 1.46 3.97± 1.68 2.46± 0.53 2.02± 1.17 6.90± 0.97

MC exp. ttbar events 5.28± 1.49 3.15± 1.55 1.85± 0.42 1.50± 1.04 4.79± 0.89
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Validation regions tt̄
Definitions
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VRL23b
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nbjet == 3 nbjet ==3
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4
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je

t6
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mT>100 GeV

Two set of validation regions designed to validate tt̄
modelling:

VR*3b
(VRL13b, VRL23b, VRH13b, VRH23b, VRH33b)
• same mT cut as in the SRs, orthogonality

obtained by requiring the presence of exactly 3
b-tagged jets

• High statistics in the region allows to design
one VR for each of the bin of the SRs (50 - 170
events each VR)

(Full VR definitions in the backup)
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Validation regions tt̄
Definitions
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VRHmT
mT > 100 GeV

nbjet > 3
100<mT<150

nbjet > 3
100<mT<150

VRLmT
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CRT
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6n
je

t6
0

mT>100 GeV

Two set of validation regions designed to validate tt̄
modelling:

VR*mT
(VRLmT, VRHmT)
• Designed with the goal to prove the modelling

for events with nbjet > 3
• Mimic SR cuts with the exception on the cut

on mT , which is 100 < mT < 150 to ensure
orthogonality

(Full VR definitions in the backup)
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List of systematics

Statistical uncertainty coming from the limited MC statistics is the main contribution to uncertainties.
Systematic uncertainties are described by nuisance parameters not constrained by the fit:

Main experimental:
• Jet energy scale

• Jet energy resolution

• Emiss
T soft track scale

• Emiss
T soft track resolution

• Flavour tagging efficiencies

• All other systematics with smaller impact
included (list in backup)

Each source of systematics is handled following the
latest combined performance group
recommendations.

Theoretical (tt̄):
• Hard scattering: compare nominal tt̄

Powheg+Pythia8 sample with the tt̄
aMcAtNlo+Pythia8 sample

• Parton shower: compare nominal tt̄
Powheg+Pythia8 sample with the tt̄
Powheg+Herwig7 sample (dominant syst)

• Radiation High/Low: computed comparing
nominal Powheg+Pythia8 with the samples
obtained doubling the renormalization and
factorization scales and the varying the
showering

• FSR High/Low: computed looking at the Var2
variation in Pythia8
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Theory systematics
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SRH SRH1 SRH2 SRH3 SRL SRL1 SRL2
Hard Scatter -13.6 -14.7 -10.5 -1.1 -16.0 -14.6 -18.3
Parton Shower -12.5 -3.3 -11.9 -13.9 -14.5 -9.6 -21.7
Radiation Low -5.2 -3.0 -2.4 -6.4 -6.2 -3.8 -9.5
Radiation High 7.3 4.2 3.3 8.7 8.4 5.2 13.0
FSR Low -10.2 -13.3 1.4 -8.8 -8.5 -4.7 -14.4
FSR High 3.2 4.5 3.6 3.3 0.9 0.5 1.8

Total impact of systematics is 15-30%, mainly from HS, PS and JER (tables in the backup)
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Theory syst impact
Impact (in %) on the TF of the tt̄ theory uncertainties in each signal region:

SRH SRH1 SRH2 SRH3 SRL SRL1 SRL2
Hard Scatter -13.6 -14.7 -10.5 -1.1 -16.0 -14.6 -18.3
Parton Shower -12.5 -3.3 -11.9 -13.9 -14.5 -9.6 -21.7
Radiation Low -5.2 -3.0 -2.4 -6.4 -6.2 -3.8 -9.5
Radiation High 7.3 4.2 3.3 8.7 8.4 5.2 13.0
FSR Low -10.2 -13.3 1.4 -8.8 -8.5 -4.7 -14.4
FSR High 3.2 4.5 3.6 3.3 0.9 0.5 1.8

Impact (in %) on the TF of the tt̄ theory uncertainties in each validation region:

VRH13b VRH23b VRH33b VRL13b VRL23b VRHmT VRLmT
Hard Scatter -16.6 16.0 -9.3 -17.2 -23.2 -21.3 -28.2
Parton Shower 19.6 22.9 1.0 17.9 -5.5 -13.7 -13.3
Radiation Low -3.1 -5.4 -8.0 -5.3 -10.4 -8.9 -8.2
Radiation High 3.9 6.3 11.9 7.0 14.7 12.7 10.9
FSR Low -3.2 -2.7 -8.0 -9.7 -12.4 -10.9 -14.0
FSR High 3.0 4.8 0.5 2.5 6.7 -2.7 -0.5
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Validation regions tt̄
Definitions

VRL13b VRL23b VRH13b VRH23b VRH33b VRLmT VRHmT

Num leptons 1
Num b-jets (pT >30 GeV) = 3 ≥ 4
mT [GeV] >150 100− 150
Num Higgs (score > 0.7) ≥ 1

Emiss
T sig 7− 14 10− 12 12− 14 > 14 > 7 > 10

Num jets (pT >30 GeV) = 5 ≥ 6 = 4 ≥ 4 –
Num jets (pT >60 GeV) – ≥ 5 == 4
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Validation regions tt̄ for b-jets
Yield

VRH13b VRH23b VRH33b VRL13b VRL23b

Observed events 75 54 53 167 48

Fitted bkg events 83.04± 3.78 41.56± 3.05 48.13± 1.82 154.89± 7.02 62.13± 2.71

Fitted ttbar events 72.68± 3.78 35.45± 2.77 34.91± 1.82 134.95± 7.02 52.01± 2.71
Fitted VandVV events 0.52± 0.00 0.25± 0.01 0.65± 0.00 1.24± 0.00 0.62± 0.00
Fitted ttV events 2.72± 0.00 2.12± 0.12 5.29± 0.00 5.40± 0.00 2.30± 0.00
Fitted MixedHiggses events 1.89± 0.00 1.00± 0.06 1.08± 0.00 3.55± 0.00 1.55± 0.00
Fitted singletop events 4.89± 0.00 2.53± 0.15 5.55± 0.00 8.34± 0.00 3.76± 0.00
Fitted Others events 0.34± 0.00 0.21± 0.01 0.65± 0.00 1.39± 0.00 1.89± 0.00

MC exp. SM events 76.99± 0.01 38.61± 2.25 45.23± 0.00 143.66± 0.01 57.81± 0.00

MC exp. ttbar events 66.64± 0.01 32.50± 1.90 32.00± 0.00 123.73± 0.01 47.68± 0.00

T1T1_onestepN2N2_1000_550 0.71± 0.00 0.45± 0.02 14.72± 0.00 2.71± 0.00 5.86± 0.00
T1T1_onestepN2N2_800_130 2.63± 0.00 2.20± 0.12 12.65± 0.00 7.35± 0.00 11.58± 0.00
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Validation regions tt̄ for mT
Yield

VRHmT VRLmT

Observed events 25 77

Fitted bkg events 27.85± 1.19 73.12± 6.27

Fitted ttbar events 22.88± 1.19 63.94± 5.71
Fitted VandVV events 0.22± 0.00 0.36± 0.03
Fitted ttV events 1.17± 0.00 1.98± 0.14
Fitted MixedHiggses events 1.10± 0.00 2.84± 0.21
Fitted singletop events 2.02± 0.00 2.62± 0.19
Fitted Others events 0.47± 0.00 1.39± 0.10

MC exp. SM events 25.95± 0.00 67.80± 4.92

MC exp. ttbar events 20.98± 0.00 58.62± 4.26

MC exp. T1T1_onestepN2N2_1000_550 events 1.88± 0.00 3.40± 0.20
MC exp. T1T1_onestepN2N2_800_130 events 3.05± 0.00 9.00± 0.52
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Selection
Jets pT > 20 GeV

|η| < 2.8
Medium JVT if pT < 120 GeV and |η| < 2.5

B-jets pT > 30 GeV
|η| < 2.5

MV2c10 > 0.63 WP (εb ∼ 77%)
Baseline Electrons Eclust/cosh(η) > 4.5 GeV

|η| < 2.47
LooseAndBlayerLH

|z0 sin θ| < 0.5mm and |d0/σ| < 5

Signal Electrons Eclust/cosh(η) > 4.5 GeV
MediumLH

FCTight isolation
|z0 sin θ| < 0.5mm and |d0/σ| < 5

Baseline Muons pT > 4 GeV
|η| < 2.4

|z0 sin θ| < 0.5mm and |d0/σ| < 3
Signal Muons pT > 5 GeV

Medium
FCTightTrackOnly isolation

|z0 sin θ| < 0.5mm and |d0/σ| < 3 54 / 32
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tt̄ decay composition
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tt̄ HF composition
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StopH exclusion limits

Model independent limits set on:

I Visible σ at 95% CL

I Number of observable events

I Number of signal events

I CLB for the background-only hypothesis

I Discovery p-value (p(s = 0))

Signal channel 〈εσ〉95
obs [fb] S95

obs S95
exp CLB p(s = 0) (Z)

SRH 0.05 7.0 10.3+4.4
−3.2 0.15 0.50 (0.00)

SRL 0.13 18.1 14.2+6.0
−3.8 0.74 0.25 (0.67)
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t̃ signal model reinterpretation
∆m(t̃, χ̃


) sensitivity scan

t̃ reinterpretation based on StopZ decay, with
∆m(t̃, χ̃

) = 40 GeV

Result can be extended by scanning sensitivity when
varying ∆m(t̃, χ̃

) for signal point m(t̃, χ̃
) = (600,

300) GeV with different
∆m(t̃, χ̃

) = 10, 20, 30, 40, 55, 70 GeV
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Combination with StopZ
Exclusion limit BR scans

Main interpretation performed with t̃ decay
with 50% BR in either Z or h.
Sensitivity of the analysis to models with
different branching ratios (0%, 100%)
studied by re-weighting χ̃ decays using their
truth information
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Selection strategy
Exclusion Signal Regions

In order to take advantage of the different signal-to-background ratios in the different bins,
multi-bin regions are defined starting from the SRL and SRH definitions. Discovery signal
regions binned in njet60, nHiggs, and METsig:

Definition SRL1A SRL1B SRL2A SRL2B SRH1A SRH1B SRH2A SRH2B SRH3A
Num` 1
Num30

b−jets ≥ 4

mT [GeV] > 150

Emiss
T sig 7− 14 10− 12 12− 14 > 14

Num60
jets = 5 ≥ 6 = 4 ≥ 4

Num0.7
Higgs = 1 ≥ 2 = 1 ≥ 2 = 1 ≥ 2 = 1 ≥ 2 ≥ 1
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Results
Pull plot
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Results
Stop2
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